# Non-resonant and resonant Di-Higgs searches at ATLAS and CMS





Valerio D'Amico, University and INFN Roma Tre

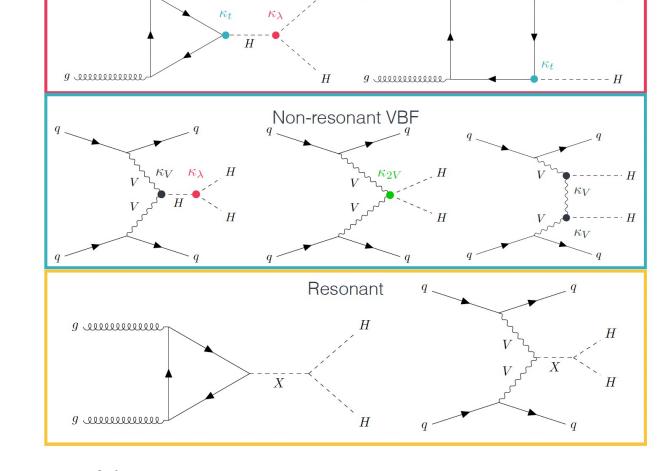
On behalf of the ATLAS and CMS collaborations



Brookhaven Forum 2021 - November 3-5, 2021

### Introduction

Higgs pair production process gives access to the value of the Higgs self-coupling  $\kappa_{\lambda} (= \lambda_3 / \lambda_{3,SM})$ , which describes the shape of the Higgs potential:


$$V(H) = \frac{1}{2} m_H^2 H^2 + \lambda_3 H^3 + \frac{1}{4} \lambda_4 H^4 + O(H^5)$$

• Non-resonant ggF production mode: Destructive interference between the two diagrams

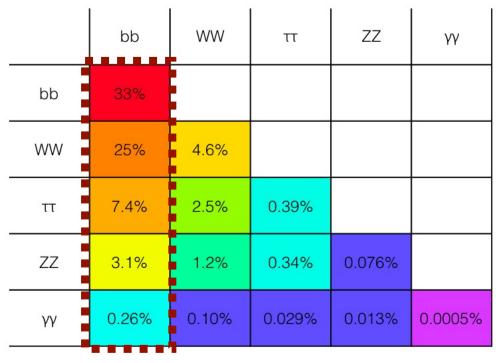
$$\to \sigma_{SM}^{ggF}(HH) = 31.05 \text{ fb} \quad @13TeV$$

• Non-resonant VBF production mode: Unique sensitivity to  $\kappa_{2V}$ , but more rare process

$$→ σ_{SM}^{VBF}(HH) = 1.73 \text{ fb}$$
 @13*TeV*



Non-resonant ggF


 Resonant process X → HH is predicted by many extensions of the SM: electroweak singlet models, two-Higgs-doublet models, MSSM, ...

### HH decay modes

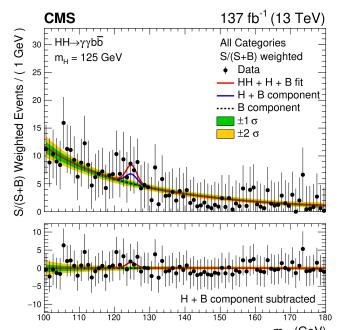
Larger BR from  $H \to bb$  decay, required by the majority of analyses for one of the two H decays. For the second Higgs, analyses focus on different decay modes, in particular the most used are:

- $> b\overline{b}b\overline{b}$ : larger BR, but challenging backgrounds from multijet production
- >  $b\bar{b}WW$ : second leading BR, large  $t\bar{t}$  background, searches in both semi-leptonic and di-leptonic final states
- $ightharpoonup b\overline{b}\tau\tau$  and  $b\overline{b}ZZ$ : smaller BRs, leptons  $(e/\mu)$  or hadronic- $\tau$  used for triggering depending on the final state
- $ightharpoonup b \overline{b} \gamma \gamma$ : smallest BR but very sensitive analysis thanks to the excellent acceptance ( $\gamma \gamma$  trigger) and reconstruction resolution

The most updated results in all channels will be presented, with emphasis on 2021 results, covering also the Resonant searches.



# ATLAS $36 fb^{-1}$ combined results


- Non-resonant Higgs pair production searched in six different decay channels:
  - $b\overline{b}b\overline{b}$ ,  $b\overline{b}\tau\tau$ ,  $b\overline{b}\gamma\gamma$ , WWWW,  $WW\gamma\gamma$ ,  $b\overline{b}WW$
- The 3 most sensitive channels have been combined obtaining a better limit on the *HH* cross section production
- New round of  $b\overline{b}b\overline{b}$ ,  $b\overline{b}\tau\tau$  and  $b\overline{b}\gamma\gamma$  analyses with 139  $fb^{-1}$
- New analyses focusing on (semi-) leptonic final states:  $b\overline{b}WW, b\overline{b}\ell\ell$  and multilepton

### Physics Letters B 800 (2020) 135103



# CMS $HH \rightarrow b\overline{b}\gamma\gamma$ (137 $fb^{-1}$ )

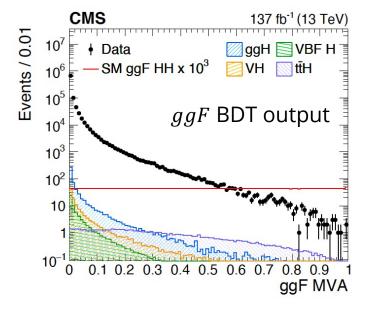
- Two BDTs are used to discriminate ggF and VBF HH signals from backgrounds
- Additional **Deep Neural Network (DNN)** to further improve the separation against  $t\bar{t}H$
- 12 ggF and 2 VBF HH optimised regions are defined from cuts on: BDT outputs and  $\widetilde{M}_X=m_{b\overline{b}\gamma\gamma}-m_{b\overline{b}}-m_{\gamma\gamma}+2m_H$
- Backgrounds estimated from 2D fit to  $m_{\gamma\gamma}$  and  $m_{jj}$  side bands in all regions
- Maximum Likelihood fit to  $m_{\gamma\gamma}$  and  $m_{jj}$  distributions to extract the HH signal

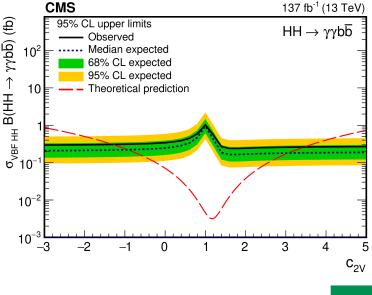


### Observed (expected) limits at 95% CL:

 $ightharpoonup \sigma_{ggF+VBF}^{HH} < 7.7 (5.2) imes \sigma_{ggF+VBF}^{HH SM}$ 

> -3.3 (-2.5) <  $\kappa_{\lambda}$  < 8.5 (8.2)

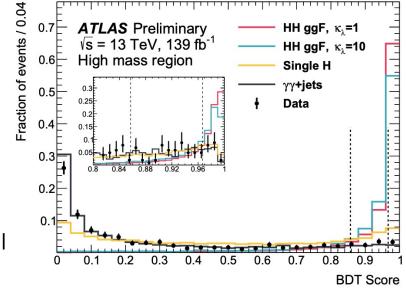

Stat. limited

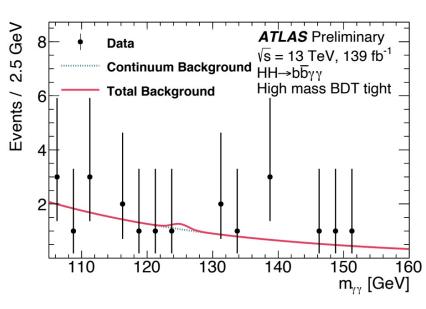

Limits on  $\sigma_{VBF}^{HH}$  obtained fixing  $\sigma_{ggF}^{HH}$  to its SM value:

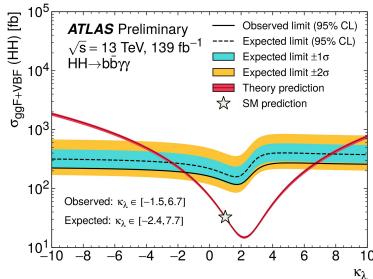
❖  $\sigma_{VBF}^{HH}$  < 225 (208) ×  $\sigma_{VBF}^{HH SM}$ 

❖  $-1.3(-0.9) < \kappa_{2V} < 3.5(3.1)$ 

2D scans to the  $\kappa_t$  vs  $\kappa_\lambda$  and  $\kappa_{2V}$  vs  $\kappa_\lambda$  planes  $t\bar{t}H$  category added to improve the sensitivity to  $\kappa_t$ 





JHEP 03 (2021) 257

# ATLAS $HH \rightarrow b\overline{b}\gamma\gamma$ (139 $fb^{-1}$ )

- Cuts are on  $m^*_{bb\gamma\gamma}=m_{bb\gamma\gamma}-m_{bb}-m_{\gamma\gamma}+250~GeV$  (high/low mass) and BDT scores (loose/tight), resulting in 4 categories
- BDT trained for each mass region vs  $\gamma\gamma$ ,  $t\bar{t}H$ , ggH, and ZH backgrounds
- The analysis is optimised for ggF HH.
   However, VBF HH events are also considered as signal
- Backgrounds estimated from fit to  $m_{\gamma\gamma}$  side bands
- Fit to  $m_{\gamma\gamma}$  in  $105 < m_{\gamma\gamma} < 160~GeV$  range in all the regions to extract HH signal

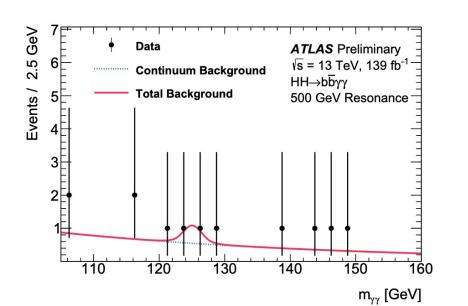


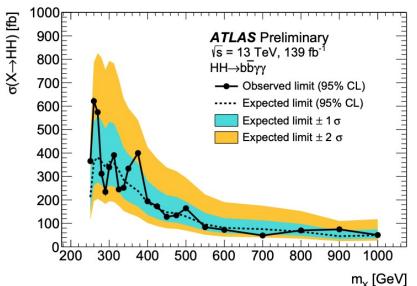


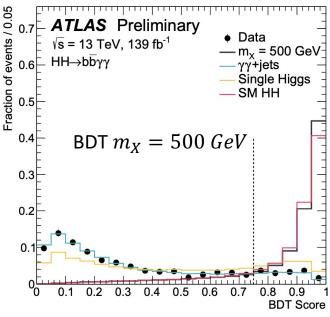


### Observed (expected) limits at 95% CL:

 $ightharpoonup \sigma_{ggF+VBF}^{HH} < 4.1 (5.5) imes \sigma_{ggF+VBF}^{HH SM}$ 


 $ightharpoonup -1.5 (-2.4) < \kappa_{\lambda} < 6.7 (7.7)$ 


Statistically limited results


ATLAS-CONF-2021-016

# ATLAS $X \rightarrow HH \rightarrow b\overline{b}\gamma\gamma$ (139 $fb^{-1}$ )

- Resonant analysis targeting  $X \to HH \to b\bar{b}\gamma\gamma$  with masses  $m_X$  from 251 to 1000 GeV
- A single BDT is trained for all resonance masses with a two steps architecture:
  - First BDT to discriminate signal against  $\gamma \gamma$  and  $t\bar{t}\gamma \gamma$  backgrounds
  - Second BDT to discriminate signal against single Higgs background
  - Combined output used to define analysis regions,
     with mass-dependent cuts applied to define SRs for the different tested mass points
- Background estimate and fit procedure as in non-resonant analysis, with the SM HH
  expected signal counted together with the other backgrounds







ATLAS-CONF-2021-016

# CMS $HH \rightarrow b\overline{b}b\overline{b}$ (138 $fb^{-1}$ )

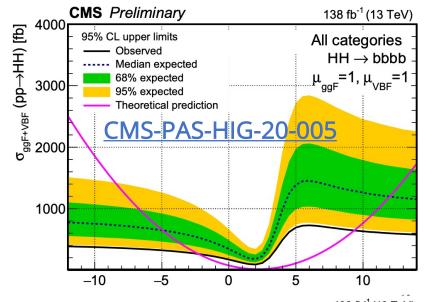
Resolved (ggF and VBF) and boosted (only VBF) analyses

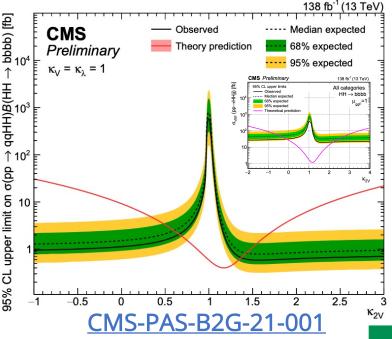
#### Resolved (CMS-PAS-HIG-20-005):

- ggF and VBF HH events are classified trough a BDT
- $\chi = \sqrt{\left(m_{H_1} 125 GeV\right)^2 + \left(m_{H_2} 120 GeV\right)^2}$  distance used to build SRs and CRs

#### Boosted (CMS-PAS-B2G-21-001):

- ParticleNet multiclass classifier to discriminate between large-radius jets from  $H \to b\bar{b}$  decays and those from QCD multijet processes
- 3 regions defined based on the MVA output: High, Medium and Low purity
- Large multijet background estimated from data
- Binned maximum likelihood fits done on all SRs and CRs to extract limits


### Observed (expected) limits at 95% CL:


$$ightharpoonup \sigma_{ggF+VBF}^{HH} < 3.6 (7.3) imes \sigma_{ggF+VBF}^{HH SM}$$

$$\triangleright$$
 -2.3 (-5.0) <  $\kappa_{\lambda}$  < 9.4 (12.0)

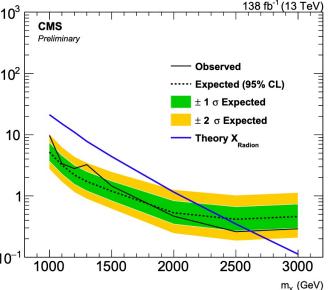
$$ightharpoonup -0.1 (-0.4) < \kappa_{2V} < 2.2 (2.5)$$

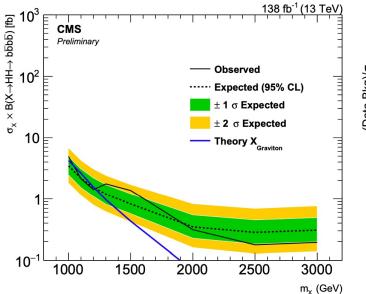
ho 0.6 (0.6) <  $\kappa_{2V}$  < 1.4 (1.4) Boosted

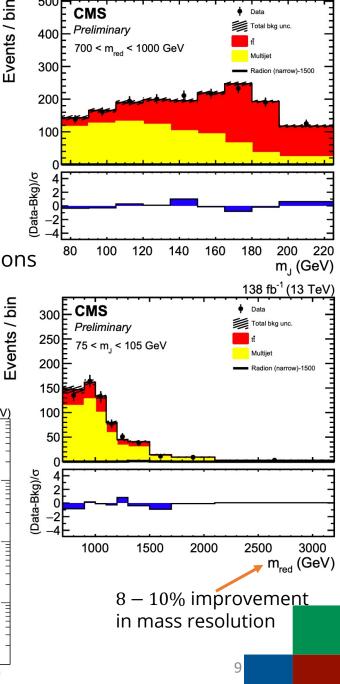




# CMS $X \to HH \to bbbb (138 fb^{-1})$


- Resonant analysis targeting massive BSM resonance X with a mass  $m_X$  of 1-3 TeV
- Fully boosted or semi-resolved topologies studied: 1 or 2 large-R jets in the event
- Merged  $H \rightarrow b\bar{b}$  jets are identified with a DNN tagger, used also to categorize events
- Reduced mass variable  $m_{red}$  used to mitigate jet energy and mass resolution fluctuations Fully boosted analysis:  $m_{red} = m_{II} - (m_I - m_H) - (m_{I2} - m_H) > 750 \, GeV$


Semi-resolved analysis:  $m_{red} = m_{III} - (m_I - m_H) - (m_{II} - m_H) > 750 \, GeV$ 


Background: dominant QCD from data,  $t\bar{t} + jets$  templates from MC fit to data in each bin of 2D ( $m_I$ ,  $m_{red}$ ) space.

A likelihood fit to data, combining the different categories, is used to test the signal hypothesis

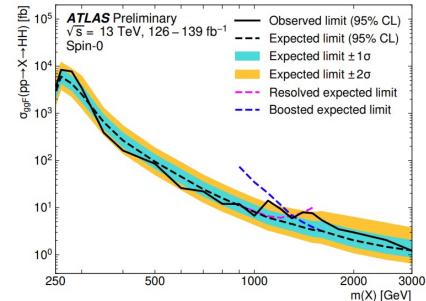
CMS-PAS-B2G-20-004

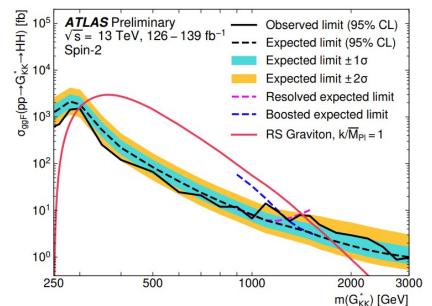






**CMS** 400 Preliminary 138 fb<sup>-1</sup> (13 TeV)

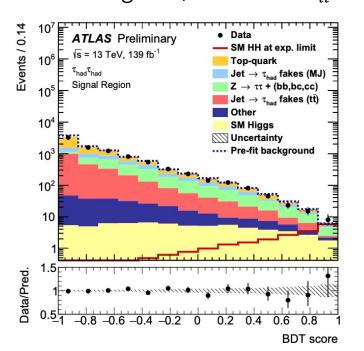

# ATLAS $X \rightarrow HH \rightarrow b\overline{b}b\overline{b}$ (126 – 139 $fb^{-1}$ )

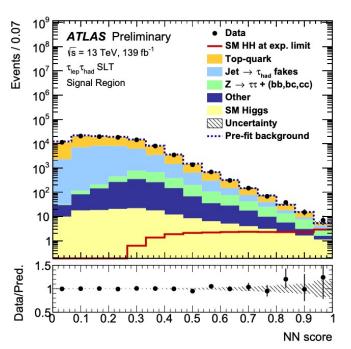

### Resolved topology analysis:

- Resonances ranging  $m_X \in [251,1500]$  *GeV*
- BDTs are used to pair b-jets
- Data-driven background (~95% multijet, rest  $t\bar{t}$ ): NN reweighting correction applied

#### Boosted topology analysis:

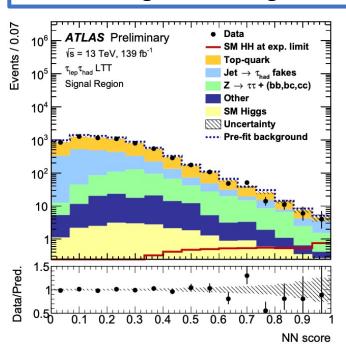
- Resonances ranging  $m_X \in [900,3000]$  GeV
- At least two large-radius jet requirement
- B-tagging done with track-jets: 1 or 2 b-tags
- Three categories: 2b, 3b and 4b
- Multijet background is data-driven, tt from MC
- Signal regions are defined in  $m_{H_1}$ ,  $m_{H_2}$  plane
- Fit done on  $m_{HH}$  distribution
- ❖ Limits set at 95% CL on spin-0 and spin-2 narrow resonance signal hypotheses



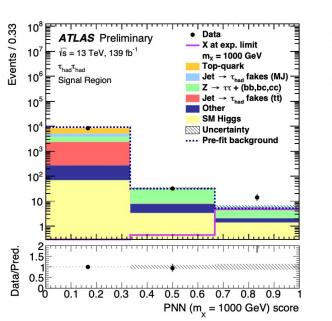

Most significant excess at 1100~GeV with local (global) significance of:  $2.6~\sigma~(1.0~\sigma)$  for spin-0  $2.7~\sigma~(1.2~\sigma)$  for spin-2 signal models

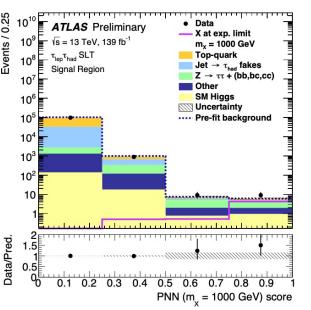
# ATLAS $HH \rightarrow b\overline{b}\tau\tau$ (139 $fb^{-1}$ )

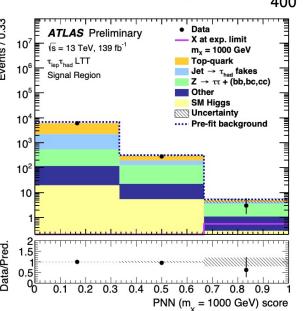

- Semi-leptonic and full hadronic au decays are considered:  $au_{lep} au_{had}$  and  $au_{had} au_{had}$
- <u>Triggers</u>: single-tau or di-tau for  $\tau_{had}\tau_{had}$ , single-lepton (SLT) or lepton+tau (LTT) triggers for  $\tau_{lep}\tau_{had}$
- MVA analysis strategy: BDT in  $\tau_{had}\tau_{had}$  category, NN in  $\tau_{lep}\tau_{had}$  categories (split per trigger type)
- Fake-tau background estimated from data
- Maximum Likelihood fit on MVA output distributions in the three event categories, and to the  $m_{II}$  distribution in the Z + HF CR

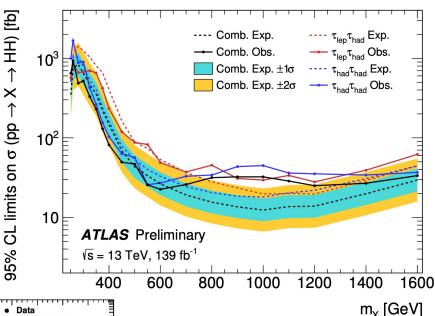





### Observed (expected) limits at 95% CL:


 $\sigma_{ggF+VBF}^{HH}$  < 4.7 (3.9)  $\times \sigma_{ggF+VBF}^{HH~SM}$  combining all the categories





# ATLAS $X \rightarrow HH \rightarrow b\overline{b}\tau\tau$ (139 $fb^{-1}$ )

- Resonant HH production search targeting resonance masses  $m_X$  between 260 and 1600 GeV
- Same event selection and categorization of the non-resonant analysis
- Parametrised Neural Network (PNN) in the mass of the heavy resonance
- Same background modelling and fakes estimation of non-resonant analysis
- Maximum Likelihood fit on PNN output distributions in the three event categories, and to the  $m_{ll}$  distribution in the Z+HF CR









At  $m_X = 1$  TeV found the largest excess with a local (global) significance of  $3.0 \sigma (2.0^{+0.4}_{-0.2} \sigma)$ 

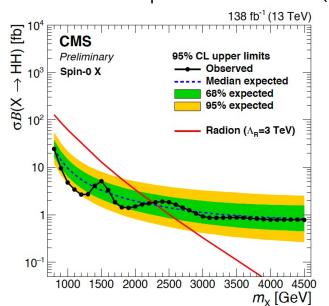
# $HH \rightarrow b\overline{b}WW/ZZ$ searches

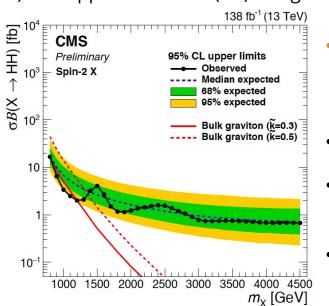
### ATLAS $HH \rightarrow b\overline{b}\ell\ell$ analysis (139 $fb^{-1}$ Phys.Lett. B 801(2020)135145):

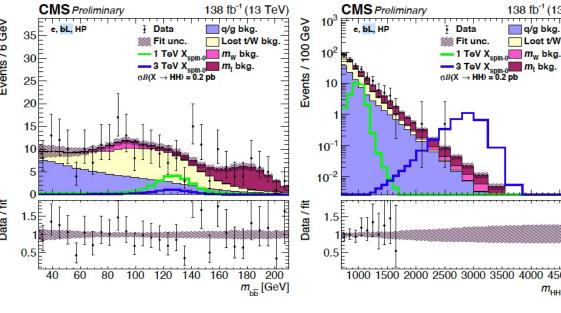
- 90% of total signal yield in SR from  $b\overline{b}WW$ , 9%  $b\overline{b}\tau\tau$  and 1%  $b\overline{b}ZZ$
- Multi-class NN trained on ggF signal vs Top,  $Z/\gamma^* \to \ell\ell$  and  $Z/\gamma^* \to \tau\tau$
- Fit on combined NN output  $d_{HH}$ :  $\sigma_{ggF}^{HH} < 40~(29) \times \sigma_{ggF}^{HH~SM}$  at 95% CL

### CMS $HH \rightarrow b\overline{b}ZZ \rightarrow b\overline{b}4\ell$ analysis (137 $fb^{-1}$ CMS PAS HIG-20-004):

- 9 BDTs trained (for each data taking year and lepton flavour  $4e/4\mu/2e2\mu$ )
- Fit on BDT outputs:  $\sigma_{ggF}^{HH} < 30~(37) \times \sigma_{ggF}^{HH~SM}$  at 95% CL


ATLAS  $b\overline{b}WW$  1-lepton analysis (published in <u>JHEP 04 (2019) 092</u> with 36  $fb^{-1}$ ) is under re-optimisation with full Run2 dataset using MVA approach to deeply improve the previous limit of  $305 \times \sigma_{ggF}^{HHSM}$  at 95% CL





138 fb<sup>-1</sup> (13 TeV)

# CMS $X \rightarrow HH \rightarrow b\overline{b}qql\nu$ or $2\ell$ (138 $fb^{-1}$ )

- Single lepton and dilepton final states:  $HH \to b\bar{b}WW^* \to b\bar{b}qqlv$  or  $b\bar{b}lvlv$ ,  $HH \to b\bar{b}\tau\tau \to b\bar{b}lvvlvv$
- $m_X$  between 800 GeV and 4.5 TeV:  $H \rightarrow bb$  boosted  $\rightarrow$  AKT8 jet
- 1-lepton channel:
  - Boosted  $W \rightarrow qq$  decay reconstructed with 1 large-radius jet
  - Likelihood-based reconstruction of  $H \rightarrow WW^*$  4-momentum
  - Events divided in  $e/\mu$  categories
- 2-lepton channel:
  - Events split in same-flavour (SF) and opposite-flavour (OF) categories





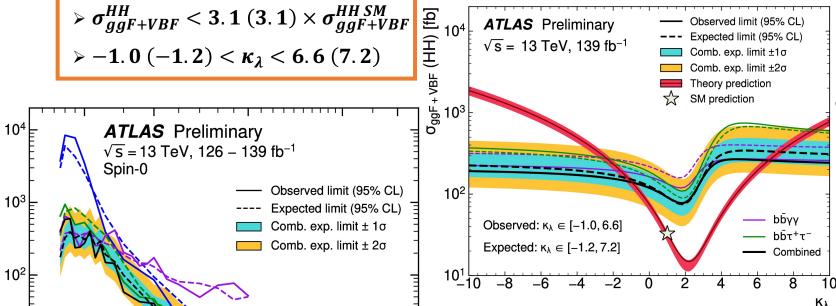


- Additional categorization for loose/tight (bL/bH) bb-tagging and low/high-purity (LP/HT) of the  $W \rightarrow qq$  jet substructure  $\rightarrow$  12 regions in total
- $t\bar{t}$ , W + jets and multijet backgrounds from MC templates
- Simultaneous 2D fit on  $m_{hh}$  and  $m_X$  distributions in all the regions
- 95% CL limits set for spin-0 and spin-2 resonance masses

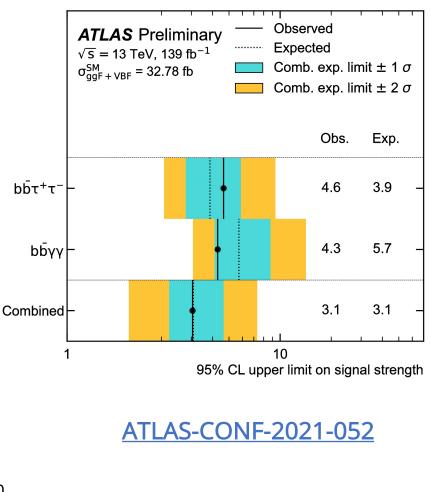
### **ATLAS** combination

bb̄bb̄ bb̄τ+τ-

bbγγ


300

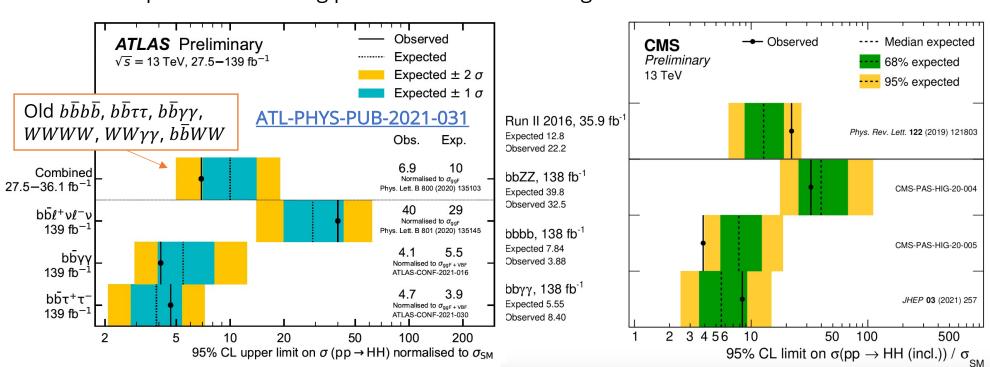
Combined

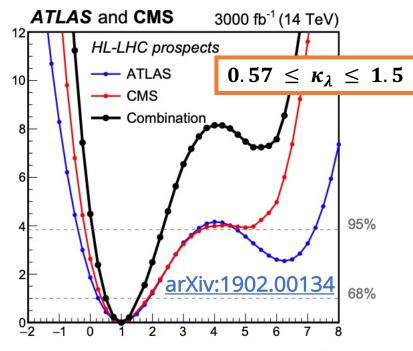

500

1000

- > Preliminary combination of the non-resonant and resonant *HH* searches
- > The combination of  $b\bar{b}\tau\tau$  and  $b\bar{b}\gamma\gamma$  full Run2 non-resonant analyses leads to improved observed (expected) limits at 95% CL:




m<sub>X</sub> [GeV]




- > Narrow-width spin-0 resonance signal hypothesis tested in  $b\overline{b}b\overline{b}$ ,  $b\overline{b}\tau\tau$  and  $b\overline{b}\gamma\gamma$  ATLAS analyses
- $\triangleright$  Each analysis lead the combined sensitivity in different  $m_X$  regions between 251 GeV and 3 TeV
- $\succ$  Largest excess at 1.1 TeV with local (global) significance of 3.2  $\sigma(2.1~\sigma)$

## Summary

- Many new results in different HH decay channels released this year!
  And more channels coming soon!!!
- > Improved limits with larger statistics and new MVA analysis techniques
- $\gt VBF$  production mode now accessible and results on  $\kappa_{2V}$  released
- > Resonant *HH* limits improved with MVA boosted topology reconstruction
- > Prospects done scaling partial-Run2 results to High-Lumi statistics





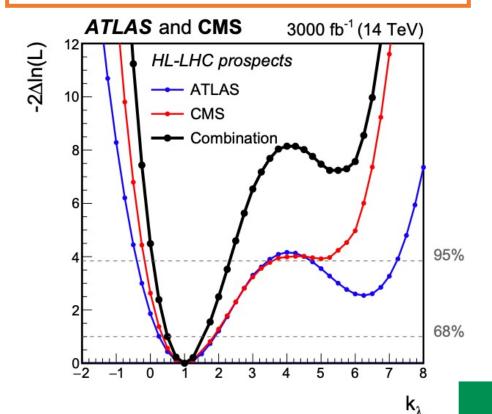
.2\ln(\L)

Now finishing the last analyses and combinations

Then looking forward to Run3 and High-Lumi!!

# Backup

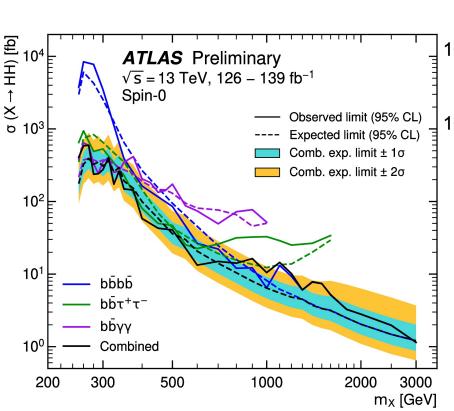
### ATLAS+CMS prospects for HL-LHC

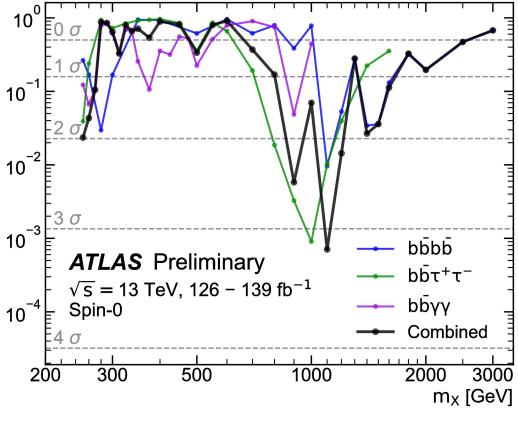

- Scaling sensitivity of partial Run2 analyses (2015-2016) to  $L=3000fb^{-1}$  and  $\sqrt{s}=14~TeV$
- Combination done using most sensitive ATLAS and CMS analyses

|                              | Statistical-only |          | Statistical + Systematic |          |  |
|------------------------------|------------------|----------|--------------------------|----------|--|
|                              | <b>ATLAS</b>     | CMS      | <b>ATLAS</b>             | CMS      |  |
| $HH	o bar{b}bar{b}$          | 1.4              | 1.2      | 0.61                     | 0.95     |  |
| HH	o bar b	au	au             | 2.5              | 1.6      | 2.1                      | 1.4      |  |
| $HH	o bar b\gamma\gamma$     | 2.1              | 1.8      | 2.0                      | 1.8      |  |
| $HH 	o b ar{b} VV(ll  u  u)$ | -                | 0.59     | -                        | 0.56     |  |
| $HH 	o b ar{b} Z Z(4l)$      | -                | 0.37     | -                        | 0.37     |  |
| combined                     | 3.5              | 2.8      | 3.0                      | 2.6      |  |
| Significance in              | Comb             | Combined |                          | Combined |  |
| standard deviations          | 4.5              | 5        | 4.0                      |          |  |

#### Improvements are going beyond the increase of luminosity:

- Improving performance
- Reducing systematic uncertainties (experimental and theoretical)
- Improving analysis techniques


 $0.57 \le \kappa_{\lambda} \le 1.5$  with syst. unc. Second minimum excluded at 99.4% CL

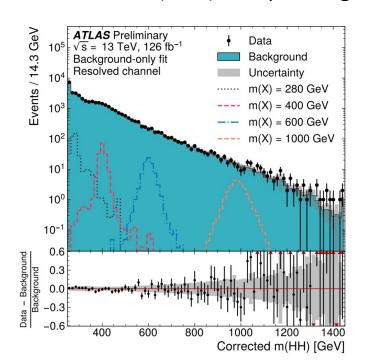


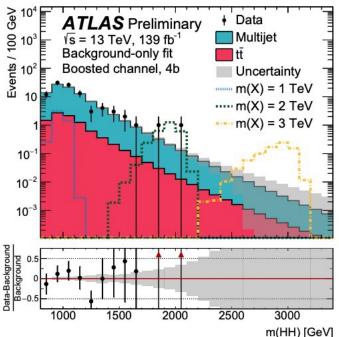

### ATLAS Run2 Resonant searches combination

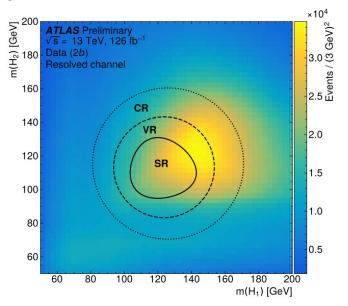
ocal p<sub>0</sub>-value

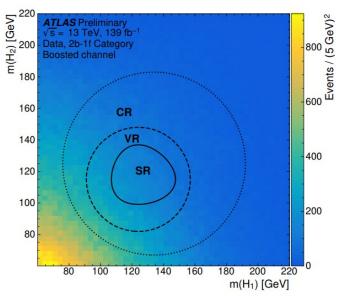
- Local p0-value as a function of the heavy resonance mass  $m_X$  for the spin-0 resonance model
- Each curve represents the  $p_0$ -value corresponding to the single  $b \overline{b} b \overline{b} b$ ,  $b \overline{b} \tau \tau$ ,  $b \overline{b} \gamma \gamma$  analyses, as well as the  $p_0$ -value resulting from statistical combination of the different analyses
- The largest excess in the combined limit is found at  $m_X = 1.1 \, TeV$  and it corresponds to a local (global) significance of  $3.2 \, \sigma \, (2.1 \, \sigma)$







ATLAS-CONF-2021-052


#### ATL-CONF-2021-035

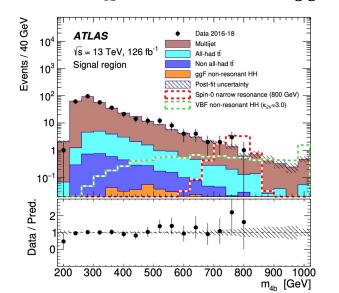

# ATLAS $X \rightarrow HH \rightarrow b\overline{b}b\overline{b}$ (126 – 139 $fb^{-1}$ )

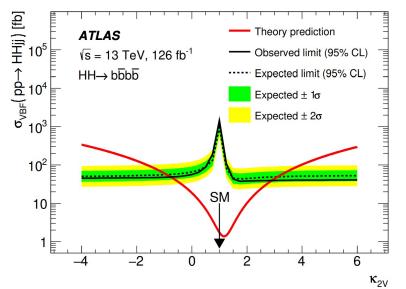
- Signal regions are defined in  $m_{H_1}$ ,  $m_{H_2}$  plane
- Fit done on  $m_{HH}$  distribution
- Limits set at 95% CL on spin-0 and spin-2 narrow resonance signal hypotheses
- Most significant excess at 1100 GeV with local (global) significance of 2.6  $\sigma$  (1.0  $\sigma$ ) for spin-0 and 2.7  $\sigma$  (1.2  $\sigma$ ) for spin-2 signal model

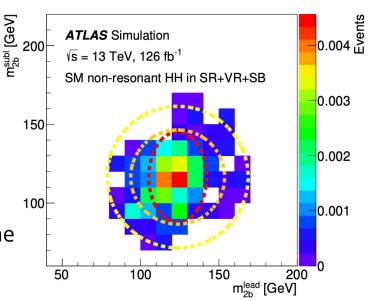










# ATLAS $VBF\ HH \rightarrow b\overline{b}b\overline{b}$ (126 $fb^{-1}$ )


- $VBF\ HH$  candidates selected requiring 4 central b-tagged jets and  $\geq 2$  forward jets
- Pairing of b-jets done minimizing a distance  $D_{HH}$ :

$$D_{HH} = \sqrt{\left(m_{2b}^{lead}\right)^2 + \left(m_{2b}^{sublead}\right)^2} \left| \sin\left(\tan^{-1}\left(\frac{m_{2b}^{sublead}}{m_{2b}^{lead}}\right) - tan^{-1}\left(\frac{116.5 \text{ GeV}}{123.7 \text{ GeV}}\right) \right) \right|$$

- Concentric SR, VR and side-band regions are defined in  $m_{2b}^{lead}\ vs\ m_{2b}^{sublead}$  2D mass plane
- SR is defined by  $X_{HH} = \sqrt{\left(\frac{m_{2b}^{lead} 123.7 \ GeV}{11.6 \ GeV}\right)^2 + \left(\frac{m_{2b}^{sublead} 116.5 \ GeV}{18.1 \ GeV}\right)^2} < 1.6$
- Fit to  $m_{4b}$  distribution with ggF HH events considered as background



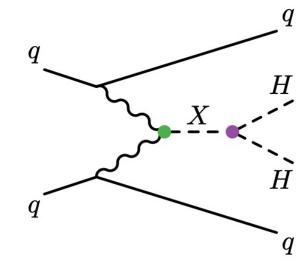




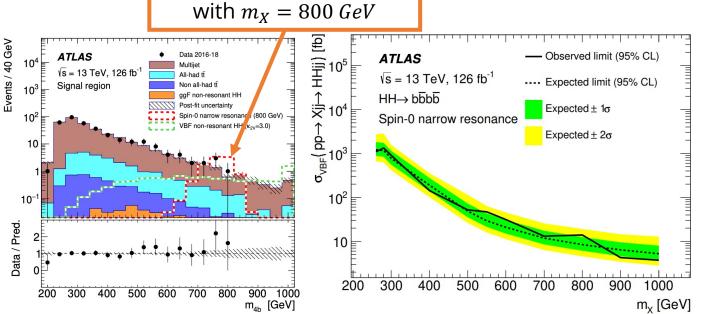
### Observed (expected) limits at 95% CL:

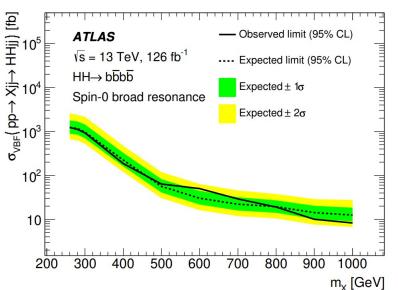
- $ightharpoonup \sigma_{VBF}^{HH} < 1000 (540) \times \sigma_{VBF}^{HH SM}$
- $\sim -0.43 (-0.55) < \kappa_{2V} < 2.56 (2.72)$

Results limited by statistical precision, followed by multijet background systematics


<u>JHEP 07 (2020) 108</u>

# ATLAS $VBF X \rightarrow HH \rightarrow b\overline{b}b\overline{b}$ (126 $fb^{-1}$ )

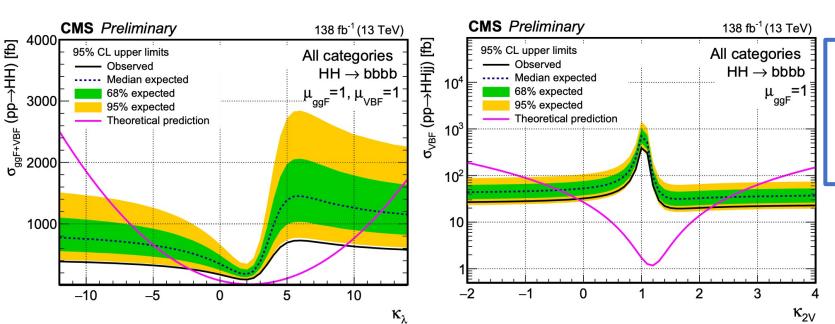

- Same event selection of the non-resonant analysis
- Two classes of signals are tested with  $m_X$  in the range  $260 1000 \, GeV$ :
  - Spin-0 narrow resonance, width 4 MeV
  - Spin-0 broad resonance, width 10 20% of  $m_X$
- Fit on  $m_{4b}$  distribution for the different signal hypotheses

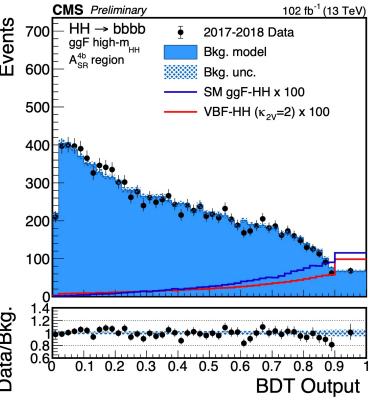

Spin-0 narrow resonance

Upper limits set for each mass point for the two signal classes








# CMS $HH \rightarrow b\overline{b}b\overline{b}$ (138 $fb^{-1}$ )

Resolved (ggF and VBF) and boosted (only VBF) analyses

- ggF and VBF HH events are classified trough a BDT
- A distance  $\chi = \sqrt{\left(m_{H_1} 125 GeV\right)^2 + \left(m_{H_2} 120 GeV\right)^2}$  is used to build SRs and CRs
- The large multijet background is estimated from data and a maximum likelihood binned fit is simultaneously performed in all SRs





### Observed (expected) limits at 95% CL:

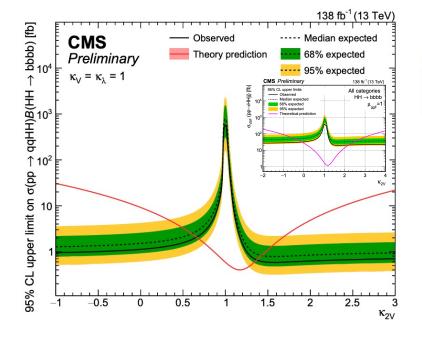
- $ightharpoonup \sigma_{ggF+VBF}^{HH} < 3.6 (7.3) imes \sigma_{ggF+VBF}^{HH SM}$
- $\sim$  -2.3 (-5.0) <  $\kappa_{\lambda}$  < 9.4 (12.0)
- $\sim$  -0.1 (-0.4) <  $\kappa_{2V}$  < 2.2 (2.5)

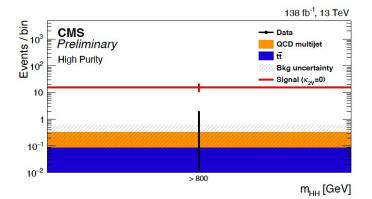
Results dominated by background modelling uncertainties

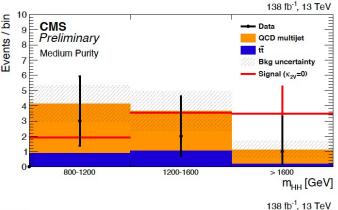
CMS-PAS-HIG-20-005

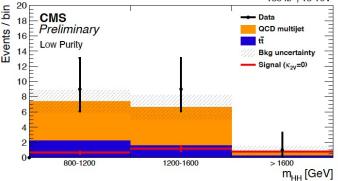
# CMS $HH \rightarrow b\overline{b}b\overline{b}$ boosted (138 $fb^{-1}$ )

- *VBF* specific category focused on highly boosted Higgs bosons in the 4b final state
- The main challenge is the efficient reconstruction of  $H \to b \bar b$
- $\rightarrow$  ParticleNet multiclass classifier to discriminate between large-radius jets from  $H \rightarrow b\bar{b}$  decays and those from QCD multijet processes
- Three regions defined based on the MVA output: High, Medium and Low purity
- Main background sources from  $t\bar{t}$  and QCD multijet production, this last estimated


from data in QCD-enriched CRs


• A binned maximum-likelihood fit using the  $m_{HH}$  templates is performed simultaneously with all SRs and CRs event categories





 $\sim 0.6 (0.6) < \kappa_{2V} < 1.4 (1.4)$ 

CMS-PAS-B2G-21-001



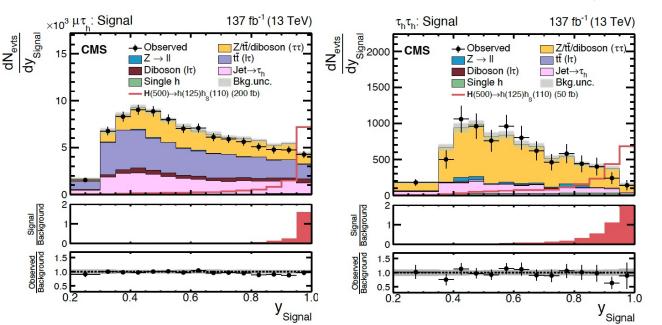


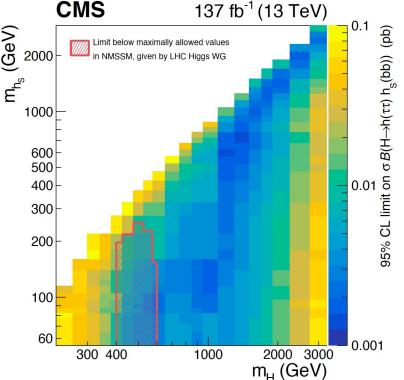




# CMS $X \rightarrow Hh_S \rightarrow b\overline{b}\tau\tau$ (137 $fb^{-1}$ )

Not a proper "di-Higgs" production


• Search targeting a resonance X decaying in a SM Higgs and another scalar  $h_S$ :


 $240~GeV \le m_X \le 3~TeV$   $60~GeV \le m_{h_s} \le 2.8~TeV$ 

- $H \rightarrow \tau \tau$  reconstructed in categories:  $e \tau_h$ ,  $\mu \tau_h$ ,  $\tau_h \tau_h$
- Multiclass NNs categorize events building 1 SR and 4 CRs for each final state and data taking period (45 categories)
   This classification is done for each point of the phase space with a different NN.

• An extended binned maximum likelihood fit is performed in all the categories simultaneously on the NN output distribution  $\max(y_i)$  with i = 1,...,5

95% CL limits are set on  $\sigma imes \mathfrak{B}$  for each mass point pair  $(m_H, m_{h_S})$ 



